

Pythagoras theorem states that a triangle is right
angled IF and only if $\mathbf{H}^{\mathbf{2}}=\mathbf{O}^{\mathbf{2}}+\mathbf{A}^{\mathbf{2}}$. Trigonometry is a branch of mathematics that studies relationships between lengths and angles of triangles. Trigonometric ratios provide these relationships. The following table summarizes these trigonometric ratios or functions, as they are also known. As these are ratios, they don't have any units.

Trigonometric ratio		
Name	Ratio	Notation
Sine	Opp/hyp O/H	$\sin (\Theta)$
Cosine	Adj/hyp A/H	$\cos (\Theta)$
Tangent	Opp/Adj O/A	$\tan (\Theta)$
Cosecant	Hyp/opp H/O	$\csc (\Theta)$
Secant	Hyp/Adj H/A	$\sec (\Theta)$
Cotangent	Adj/Opp A/O	$\cot (\Theta)$
	 The	visualized

radius of 1, centered at the origin, called a unit circle. Imagine a point (\mathbf{x}, \mathbf{y}) on the circle. It starts from the \mathbf{x} axis and travels in the counter-clockwise direction (just to keep the angles positive). Imagine that it is covering one full rotation; the central angle (in radians) increases from $\mathbf{0}$ degrees ($\mathbf{0}$ radians) to $\mathbf{3 6 0}$ degrees ($\mathbf{2} \boldsymbol{\pi}$ radians) after the rotation when the point returns to its starting place on the x axis. The radius joining (\mathbf{x}, \mathbf{y}) to the origin \mathbf{O} that forms angle \mathbf{t} with the \mathbf{x} axis forms the hypotenuse of the right triangle shown in the figure. The length of the opposite side (blue O) is \mathbf{y} units whereas the length of the adjacent side A is \mathbf{x} units.

Remember that $\sin \mathbf{t}=\mathbf{O} / \mathbf{H}=\mathbf{y} /$ radius $=\mathbf{y} / \mathbf{1}=\mathbf{y}$ units
$\cos \mathrm{t}=\mathrm{A} / \mathrm{H}=\mathrm{x} /$ radius $=\mathrm{x} / 1=\mathrm{x}$ units
$\tan t=O / A=y / x$ units

