

Pythagoras theorem states that a **triangle** is **right** angled IF and only if $\mathbf{H}^2 = \mathbf{O}^2 + \mathbf{A}^2$. **Trigonometry** is a branch of mathematics that studies relationships between lengths and angles of triangles. **Trigonometric ratios** provide these relationships. The following table summarizes these trigonometric ratios or **functions**, as they are also known. As these are ratios, they don't have any units.

Trigonometric ratio		
Name	Ratio	Notation
Sine	Opp/hyp O/H	sin(Θ)
Cosine	Adj/hyp A/H	$\cos(\Theta)$
Tangent	Opp/Adj O/A	tan(Θ)
Cosecant	Нур/орр Н/О	$\csc(\Theta)$
Secant	Hyp/Adj H/A	$sec(\Theta)$
Cotangent	Adj/Opp A/O	$\cot(\Theta)$
X	radius = H = 1 $0 = \sin t$ $A = \cos t$ X	

V The same concepts can be visualized in a circle of **radius** of **1**, centered at the **origin**, called a **unit circle**. Imagine a point (\mathbf{x}, \mathbf{y}) on the circle. It starts from the **x axis** and travels in the **counter-clockwise** direction (just to keep the angles positive). Imagine that it is covering **one full rotation**; the central angle (in radians) increases from **0 degrees (0 radians)** to **360 degrees (2** π **radians)** after the rotation when the point returns to its starting place on the x axis. The **radius** joining (**x**, **y**) to the **origin O** that forms **angle t** with the **x axis** forms the **hypotenuse** of the **right triangle** shown in the figure. The length of the **opposite side** (blue O) is **y** units whereas the length of the adjacent side A is **x** units.

Remember that $\sin t = O/H = y/radius = y/1 = y$ units

 $\cos t = A/H = x/radius = x/1 = x$ units

 $\tan t = O/A = y/x$ units