PART — II 3rd Semester FINAL DRAFT FOR CURRICULAR STRUCTURE AND SYLLABI OF FULL-TIME DIPLOMA COURSES IN ENGINEERING & TECHNOLOGY

WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

(A Statutory Body under West Bengal Act XXI of 1995) "Kolkata Karigori Bhavan", 2nd Floor, 110 S. N. Banerjee Road, Kolkata – 700013

Further suggestion may be submitted to the syllabus committee. List of the coordinators for the branch of Diploma in Electronics & Tele Communication Engineering are:

⊳	Sri Sandip Kundu	Tele: 03322277590
≻	Dr. Bijita Biswas	Mobile:9830272981
≻	Dr. Susmita Sen	Mobile:9433772629
≻	Dr. Marina Dan	Mobile:9831115387
≻	Sri Anup Sarkar	Mobile:9433521132
⊳	Sri Ashim Kumar Manna	Mobile:8902701784 <u>ashimmanna@rediffmail.com</u>

	WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION											
	TEACHING AND EXAM	INATION SC	HEM	E FO	R DIP	LOMA	IN EN	IGINEE	RING O	COUR	SES	
COUR	COURSE NAME: FULL TIME DIPLOMA IN ELECTRONICS & TELECOMMUNICATION ENGINEERING											
DURA	FION OF COURSE: 6 SEMESTE	CRS										
SEMES	SEMESTER: THIRD											
BRAN	BRANCH: ELECTRONICS & TELECOMMUNICATION ENGINEERING											
SR.	SUBJECT	CREDITS	P	ERIO	DS		EV	ALUAT	TION SO	CHEM	Е	
NO.			L	TU	PR	IN	NTERI	NAL	_~~		@TW	Total
						2	SCHEME		ESE PR			Marks
						TA	СТ	Total				_
1.	Network Analysis	3	4	1		10	20	30	70	-	-	100
2.	Analog Electronics -I	4	5	2	-	10	20	30	70	-	-	100
3.	Digital Electronics	3	4	1	-	10	20	30	70	-	-	100
4.	Electrical Machine	2	2	-	-	5	10	15	35	-	-	50
5	Computer Programming	2	2			5	10	15	25	-	-	50
Э.	Language	2	2			5	10	15	55			
6.	Network Analysis Laboratory	2	-	-	2	-	-	-	-	75	-	75
7.	Analog Electronics Laboratory	2	-	-	3	-	-	-	-	100	-	100
8.	Digital Electronics Laboratory	2	-	-	2	-	-	-	-	75	-	75
9.	Electrical Machine Laboratory	1	-	-	1	-	-	-	-	50	-	50
10.	10. Computer Programming				1					50	-	
	Language Laboratory		-	-	1	-	-		-	50		50
11.	Professional Practice - I	2	-	-	3	-	-	-	-	-	50	50
	Total	24	17	4	12	40	80	120	280	350	50	800

STUDENT CONTACT HOURS PER WEEK:33 hrs, (Teaching-15 weeks + Internal Exam-2 weeks)

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

ABBREVIATIONS: L- Lecture, TU- Tutorials, PR- Practical, TA- Teachers Assessment, CT- Class Test, ESE- End Semester Exam

TA: Attendance & surprise quizzes = 6 marks, Assignment & group discussion = 4 marks.

Total Marks : 800

Minimum passing for Sessional marks is 40%, and for theory subject 40%.

Assessment of Practical, Oral & term work to be done as per the prevailing norms of curriculum implementation & assessment.

Name of the course: Network Analysis			
Course Code: ETCE/NA/S3	Semester: Third		
Duration: One Semester (Teaching - 15	Maximum Marks: 100 Marks		
weeks + Internal Exam-2 weeks)			
Teaching Scheme:	Examination Scheme		
Theory: 4 contact hrs./ week	Class Test (Internal Examination): 20 Marks		
Tutorial: 1 contact hours / week	Teacher's Assessment (Attendance, Assignment & interaction): 10 Marks		
Practical: 2 contact hours/ week	End Semester Examination: 70 Marks		
Credit: 5 (Five)	Practical: 75 Marks		
Rationale:			
Circuit theory is one of the core subjects in Ele	ectronics and Tele Communication Engineering. The subject covers basic		
elements of network, AC fundamentals, Filter	circuit & network synthesis.		
Objectives:			
The student will be able to			
1) Understand the concept of netwo	orks, its parameters and network theorems.		
2) Know passive filters and their an	nalysis		
3) Understand Transmission lines			
4) Understand attenuators and equalisers.			
5) Know Laplace transform and tra	nsient response to electrical networks.		

	Periods	Marks		
Unit 1	Netwo	10		
	1.1	Active and passive network - Balanced and unbalanced network -		
		Symmetrical and asymmetrical network – T and Π network and their		
		conversion – Simple problems		
	1.2	Characteristic impedance - Propagation constant and image impedance -		
		Open and short circuit impedance and their relation to characteristic		
		impedance		
	1.3	Mesh Analysis and Node Analysis using independent and Controlled		
		Source Analysis		
	1.4	Thevenin's theorem - Norton's theorem - Maximum Power Transform		
		theorem – Superposition theorem – Simple problems		
Unit 2 Coupled Circuits			8	
	2.1	Idea of resonance - Series and parallel resonant circuits - Q-value,		
		selectivity, bandwidth		
	2.2	Principle of coupling - Self-inductance & mutual inductance and their		
		relationship – Co-efficient of coupling		
	2.3	Analysis of single tuned and double tuned circuits		
		Group-B		
Unit 3	Filter	Circuits	12	

	3.1	Network Synthesis Concept of poles and zeroes (without any		
		mathematical analysis)		
	3.2	Definition and relationship between neper and decibel		
	3.3	Basic idea of passive filter - Definitions of pass band, stop band and		
		cut-off frequency		
	3.4	CONSTANT-K PROTOTYPE FILTERS: a) Low pass filter, b) High pass filter,		
		c) Band pass filter, and, d) Band stop filter		
	3.5	ACTIVE FILTERS: Basic idea - Their advantages and disadvantages over		
		passive filters - Applications of filter circuits		
Unit 4	Attenu	ators and Equaliser	6	
	4.1	Basic idea of attenuator - Difference between attenuator and filter -		
		Symmetrical T and Π attenuator – Field of application of attenuators		
	4.2	Concept of equalizer - Purpose of equalizer and its classification -		
		Difference between series & shunt equalizer and their field of		
		applications		
	r	Group C		
Unit 5	Trans	mission Lines	12	
	5.1	Types of transmission lines: Parallel wire and coaxial cable		
	5.2	Primary and secondary constants of transmission lines		
	5.3	Characteristic impedance - Reflection co-efficient - Standing wave ratio		
		and their relationship		
	5.4	Simple matching methods, single and double stub match for transmission		
		lines		
	5.5	Losses in transmission lines		
	5.6	Distortion in transmission line - Causes of distortion and condition for		
		distortion less transmission - Practical feasibility for distortion less		
		transmission		
Unit 6	Transi	ent Response in Electrical Network	12	
	6.1	LAPLACE TRANSFORM: Definition – Condition of existence - Transforms		
		of some elementary functions - Linearity property - First shifting		
		property – Change of scale property – Inverse Laplace Transform		
	6.2	Transient response in electrical networks with sinusoidal and step function		
		- Analysis with RL, RC, RLC circuits, time constant using differential		
		equation		
	TOTAL		60	
		Contents Practical		

Skills to be developed: On satisfactory completion of the course, the students should be in a position to design few fundamental networks.

Intellectual Skills:

1. Interpret the results

2. Verify the tables

List of Practical: Any EIGHT(including MINI PROJECT)

	Suggested List of Laboratory Experiments
Sl. No.	
1.	To verify the Mesh Analysis and Node Analysis using independent and Controlled Source.
2.	To verify Thevenin's and Norton's theorems
3.	To verify Maximum Power Transfer theorem.
4.	To verify Superposition theorem.
5.	To study the series resonant circuit.
6.	To study parallel resonant circuit.
7.	To measure the characteristic impedance of symmetrical T and Π networks
8.	To test and to measure the cut –off frequencies of the following: —
	(a) constant k-type low pass filter;
	(b) constant k-type high pass filter
9.	To test T and Π attenuator.
10.	To study standing wave pattern for a transmission line of finite length with:
	(a) open termination,
	(b) shorted termination, and,
	(c) matched termination.
11.	To measure the attenuation constant and phase shift constant for matched termination.
12.	To study the given RC differentiator at different time constant.
13.	To study the given RC integrator at different time constant.

MINI PROJECTS

List of MINI PROJECTS				
1.	To design constant k-type low pass filter and constant k-type high pass filter			
2.	To design T and Π attenuator, which attenuate given signal to desired level.			

Examination scheme (Theoretical):

A) Internal Examination: Marks- 20

C) Teacher's Assessment: Marks- 10

- B) End Semester Examination: Marks-70
- (i) Marks on Attendance: Marks-05(ii) Assignments & Interaction: Marks- 05

Group	Unit	Obje	Total Marks		
		Note: 10 multiple choice	and 5 short answer	type questions	
		To be set Multiple Choice	To be answered	Marks per	
		(Twelve questions)		question	
А	1,2	4			
В	3,4	4	Any ten	1	10 X 1 = 10
С	5,6	4			
		To be set short answer type	To be answered	Marks per	
		(Ten questions)		question	
А	1,2	3			
В	3,4	3	Any five	2	5x2=10
С	5,6	4			

Group	Unit	Subjective Questions			Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2	3	Any five (Taking at least		
В	3,4	3	one from each group)	10	$10 \ge 5 = 50$
С	5,6	4			

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

SI.	Name of the Author	Title of the Book	Name of the Publisher
No.			
1.	Prof. D. Chatterjee	Network and transmission line	Learning Press
2.	A. K. Chakraborty	Introduction to network, Filters and	Dhanpat Rai & Sons
		Transmission Lines	
3.	V. Valkenburg	Network Analysis	Prentice Hall of India, N. Delhi
4.	Sudhakar	Circuit and networks	Tata MCGraw-Hill
5.	Jain & Kaur	Network, Filters and Transmission Lines	Tata MCGraw-Hill
6.	Hayt	Engineering Circuit Analysis	Tata McGraw-Hill
7.	Ryder	Network, Lines and Fields	Prentice Hall of India, N. Delhi
8.	Kaduskar, Rajankar,	Network Fundamentals and Analysis	Wiley
	Khatavkar		
9.	Kaduskar, Rajankar,	Network Synthesis and Filter Design	Wiley
	Shedge		

E X A M I N A T I O N S C H E M E (SESSIONAL)

Name of Subject: Network Analysis Laboratory Subject Code: ETCE/LNA/S3 Full Marks-75

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job 15, Notebook 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 35, Viva-voce 15.

Name of the course: Analog Electronics-1				
Course Code: ETCE/AE1/S3	Semester: Third			
Duration: 6 months (Teaching-15 weeks +	Maximum Marks: 100 Marks			
Internal Exam-2 weeks)				
Teaching Scheme:	Examination Scheme :			
Theory: 5 contact hrs./ week	Class Test (Internal Examination): 20 Marks			
Tutorial: 2 contact hours / week	Teacher's Assessment (Attendance, Assignment & interaction): 10			
	Marks			
Practical: 3 contact hours/ week	End Semester Examination: 70 Marks			

Credit: 6 (Six)	Pretical:100 Marks
Rationale:	

Electronics and its application play important role in our day to day life. Electronic components and circuits are used in most of the present day gadgets. Concept on analog electronics will pave easy way to understand operations and functioning of these gadgets also this subject is the basis of advance electronics. It starts with the idea of semiconductor materials, PN junction diodes which will enable the students to follow the functioning of all semiconductor devices. This is a core group subject and it develops cognitive and psychomotor skills.

Objectives:

The student will be able to-

- 1) Describe the formation of PN junction
- 2) Draw the characteristics of basic components like diode, transistor etc.
- 3) Draw and describe the basic circuits of rectifier, filter, regulator and amplifiers.
- 4) Know voltage amplifiers and its small signal analysis
- 5) Understand characteristics, operations and application of special types of diodes.

	Content (Name of topic)	Periods	Marks
	Group-A	28	
Unit 1	Semiconductor and Diode	8	
	1.1 Electrical properties of semiconductor materials, energy level diagrams		
	of conductor, semi conductor and Insulator.		
	1.2 Elemental and compound semiconductor Formation of P-Type and		
	N-Type materials and their properties. Drift and diffusion current.		
	Formation and behaviour of PN junction diode.		
	1.3 Zener diode, Zener breakdown & Avalanche Breakdown. Varactor		
	diode, Schottky diode.		
	1.4 Diode wave shaping circuits – clipper and clamper circuits		
Unit 2	Bipolar Transistor	8	
	2.1 Formation and properties of PNP and NPN Transistor		
	2.2 Transistor configurations, input and output characteristics. $\alpha,\ \beta,$ and γ		
	factors		
	2.3 Comparison of CB, CE, and CC configurations.		
Unit 3	Transistor Biasing	12	
	3.1 Concept of Q-point, ac and dc load lines		
	3.2 Stabilization and stability factor		
	3.3 BIASING: Base bias — Collector feedback bias — Emitter feedback bias		
	— Potential divider bias.		
	3.4 Bias compensation circuits using diode and thermistors – Current mirror		
	bias		
	Group-B	30	
Unit 4	JFET, MOSFET AND UJT	6	
	4.1 Difference between BJT, FET and MOSFET		
	4.2 Symbol and basic structure, Basic operation, VI characteristics and biasing		

	of JFET, MOSFET –depletion and enhancement		
	4.3 basic structure and Basic operation, VI characteristics of UJT, Application		
	of UJT		
	4.4 Relation between drain resistance, amplification factor and mutual		
	conductance		
Unit 5	Small Signal Transistor Amplifiers	12	
	5.1 Hybrid model and h-parameters of CB, CE & CC mode transistor		
	amplifiers - Calculation of voltage gain, current gain, power gain, input		
	and output impedance in terms of h-parameters - Comparison of the		
	three configurations.		
	5.2 Small signal FET equivalent circuits - Common source and common		
	drain amplifier – FET application as VVR, constant current source etc.		
	5.3 Operation of VMOS & CMOS and power MOSFET – Precautions in		
	handling MOSFET		
Unit 6	Multistage Amplifier	12	
	6.1 COUPLING: RC coupled – Direct coupled – Transformer-coupled amplifiers –		
	6.2 Effect on Gain & Bandwidth and Frequency response for cascading		
	6.3 Comparison of different types of cascading		
	GROUP-C	17	
Unit 7	Power Amplifier	8	
	7.1 Characteristics of Class A, Class B, Class C and Class AB amplifier		
	7.2 Difference between Voltage and Power Amplifier		
	7.3 TRANSFORMER COUPLED CLASS A POWER AMPLIFIER: Circuit operation –		
	Calculation of power, efficiency & distortion		
	7.4 CLASS B PUSH PULL AMPLIFIER: Circuit operation – Calculation of power,		
	efficiency & distortion - Crossover distortion - Advantages and		
	disadvantages - Complementary symmetry and quasi-complementary		
	symmetry Class B Push Pull Amplifier		
	7.5 Noise in amplifier circuits		
Unit 8	Rectifier and Power Supply	9	
	8.1 HALF WAVE AND FULL WAVE RECTIFIERS: Average voltage - R.M.S.		
	voltage, efficiency and ripple factor – Percentage voltage regulation		
	8.2 Function of filter circuits - Capacitor input filter - Inductive filter -		
	Π type filter – Calculation of ripple factor and average output voltage –		
	Function of bleeder resistor		
	8.3 Series and shunt regulator using transistor - IC Voltage Regulators:		
	Positive & Negative, their specifications		
	8.4 Voltage Multiplier : Voltage doublers - Tripler - Quadrupler - Their		
	applications		
	TOTAL	75	

	Practicals
Skills to be	developed: On satisfactory completion of the course, the students should be in a position to design power
supply, amp	lifier and other analog circuits.
Intellectual	Skills:
1. Interpret t	he results
2. Verify the	e tables
	List of Practical: Any SIX(including MINI PROJECT)
	Suggested List of Laboratory Experiments
Sl. No.	
1.	To study the VI characteristics of a forward and reverse biased p-n junction Diode
2.	To study the VI characteristics of a reverse biased Zener diode
3.	To study the input and output characteristics and to find the h-parameters of a BJT for :
	(a) C-E configuration,
	(b) C-C configuration,
	(c) C-B configuration
4.	To study the FET characteristics
5.	To study the MOSFET characteristics
6.	To study the rectifier with and without capacitor filter for : —
	(a) Half-wave rectifier,
	(b) Full-wave rectifier,
	(c) Bridge rectifier
7.	To determine frequency response characteristics of RC coupled amplifier circuit and calculation of
	bandwidth, midband gain, input impedance and output impedance for :
	(a) Single-stage amplifier,
	(b) Double-stage amplifier
8.	To study the output waveform of push-pull amplifier for Class-A, Class-B & Class-AB operations
9.	To study shunt and series regulator and draw the following plots: line regulation and load regulation
10.	To study the V-I characteristics of UJT (show the cut-off, saturation and negative resistance region)
MINI PRO	JECTS
List of MIN	

List of MINI PROJECTS	
1.	To design a power supply
2.	To design a single stage OR double stage amplifier.

Examination scheme (Theoretical):

A) Internal Examination: Marks- 20

C) **Teacher's Assessment: Marks- 10** (i) Marks on Attendance: Marks-05

B) End Semester Examination: Marks-70

(ii) Assignments & Interaction: Marks- 05

Group	Unit	Objective questions			Total Marks
		Note: 10 multiple choice and 5 short answer type questions			
		To be set Multiple Choice	To be answered	Marks per	
		(Twelve questions)		question	

А	1,2,3	4			
В	4,5,6	4	Any ten	1	$10 \ge 1 = 10$
С	7,8	4			
		To be set short answer type	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	4			
В	4,5,6	4	Any five	2	5x2=10
С	7,8	2			

Group	Unit	Subjective questions			Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	3	Any five (Taking at least		
В	4,5,6	4	one from each group)	10	$10 \ge 5 = 50$
С	5,6	3			

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

E X A M I N A T I O N S C H E M E (SESSIONAL)

Name of Subject: Analog Electronics LaboratoryFull Marks -100Subject Code: ETCE/LAE1/S3Full Marks -100

- 1. Continuous Internal Assessment of 50 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job 35, Notebook 15.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 35, Viva-voce 15.

	Text Books:		
Sl. No.	Name of the Author	Title of the Book	Name of the Publisher
1.	Malvino	Electronic Principles	Tata McGraw-Hill
2.	David A. Bell	Electronic Devices and Circuits	Oxford University Press
3.	Anil K. Maini	Electronics Devices and circuits	Wiley
4.	S. Salivanan	Electronic Devices and Circuits	Tata McGraw-Hill
5.	Millman & Halkias	Electronic Devices and Circuits	Tata McGraw-Hill
6.	Chattopadhyay & Rakhshit	Electronic Fundamentals and	New Age Int
		Applications	
7.	Boylestad & Nashalsky	Electronic Devices and Circuits	Pearson
8.	Ganesh Babu	Linear Integrated Circuits	SCITECH
9.	Mottershed	Electronic Devices and Circuits	Prentice Hall of India, N. Delhi
10.	Bhargava	Basic Electronic & Linear Circuits	Tata McGraw-Hill
11.	Sahadeb	Electronic Principle	Dhanpat Rai & Sons

12.	M.L. Anand	Electronics Devices and Circuits	S.K. Kataria and sons
13.	Dr. T. Thygrajan	Fundamentals of Electrical and	SCITECH
		Electronics Engg	
14.	Subhadeep Chowdhury	Fundamentals of Electronics	Paragon Publisher
15.	Premsingh Jakhar	Basic Electronics	Dhanpat Rai Publishing Co
16.	A. Dey Roy and D Dey Roy	Basic Electronics and Laboratory	Lakshmi Prakashani
		Manuals	

Name of the course: Digital Electronics			
Course Code: ETCE/DE/S3	Semester: Third		
Duration: One Semester (Teaching-15 weeks +	Maximum Marks: 100		
Internal Exam-2 weeks)			
Teaching Scheme:	Examination Scheme		
Theory: 4 contact hrs./ week	Class Test(Internal Examination): 20 Marks		
Tutorial: 1 contact hours / week	Teacher's Assessment (Attendance, Assignment & interaction):		
	10 Marks		
Practical: 2 contact hours/ week	End Semester Examination: 70 Marks		
Credit: 5(five)	Practical: 75 Marks		
Rationale:			

The advancements in microelectronics design, manufacturing, computer technology and information systems have caused the rapid increase in the use of digital circuits. Hence this subject is intended to learn facts, concepts, principles and applications of digital techniques. Thus, students can sharpen their skills of digital design by learning the concept of number systems, logic gates, combinational and sequential logic circuits etc.

Objectives:

The student will be able to-

- 1. Do conversion of number systems
- 2. Understand the concept of logic gates and its operation
- 3. Design simple logic circuits using logic gates
- 4. Design of combinational circuit
- 5. Design of sequential circuit
- 6. Gain the comprehensive idea on different types Semiconductor
- 7. Understand Analog to Digital Conversion and Digital to Analog Conversion techniques
- 8. Understand different logic families and their comparison

	Content (Name of topic)	Periods	Marks
	Group-A		
Unit 1	Numbers System & Basic Logic Gates	10	
	1.1 Number System - Introduction to Binary, Octal, Decimal, Hexadecimal		
	number system, Conversion of number systems, Characteristic impedance -		
	Propagation constant and image impedance - Open and short circuit		
	impedance and their relation to characteristic impedance		

	1.2 1'	s complement and 2's complement, Binary arithmetic (addition,		
	su	btraction, division, multiplication).		
	1.3 Sy	mbolic representation and truth table for logic gates: BUFFER - NOT -		
	0	R – AND – NAND – NOR – XOR – X-NOR		
Unit 2	Boolea	an Algebra	8	
	2.2	Boolean variables - Boolean function - Rules and laws of Boolean		
		algebra – De Morgan's theorem		
	2.3	Max. term and min. term - Canonical form of equation - Simplification		
		of Boolean expression		
	2.4	Karnaugh map technique - Don't care condition - Prime implicants -		
		Canonical forms – Quine-McClusky method		
	2.5	Realization of Boolean expression with logic gates		
Unit 3	Comb	inational Logic Circuits		
	3.1	ARITHMETIC CIRCUITS: Half adder - Full adder - Half subtractor -		
		Full subtractor - Parallel and serial full adder (1's complement, 2's		
		complement and 9's complement addition)		
	3.2	Design of circuits using universal gates		
	3.3	Code converter, encoder and decoder – Multiplexer & demultiplexer		
	3.4	Parity generator and checker – Comparator		
		Group-B		
Unit 4	Seque	ntial Logic Circuits	12	
	4.1	Difference between combinational and sequential logic circuits -		
		Triggering of sequential logic circuits		
	4.2	Difference between flip flop and latch - Construction of RS, D, JK, JK		
		master slave, T flip flops using basic gates, preset and clear signal		
	4.3	COUNTERS: Asynchronous and synchronous counter - Ripple counter -		
		Mod-N counter - Up-down counter - Ring counter - Johnson counter -		
		Programmable counter – Applications		
	4.4	REGISTERS: Shift registers – Serial in serial out – Serial in parallel out –		
		Parallel in serial out – Parallel in parallel out – Applications		
Unit 5	Memo	ry Devices	6	
	5.1	MEMORY ADDRESSING: Read, Write and Read Only operations		
	5.2	MEMORY CELLS: ROM, PROM, EEROM, EPROM, CDROM, Flash		
		Memory		
	5.3	Circuit diagram using CMOS transistors and working of static and		
		dynamic RAM		
	5.4	Digital Logic Arrays- PLA, PAL, GAL, FPLA, FPGA		
		Group C		
Unit 6	Data (Converters	12	
	6.1	DIGITAL TO ANALOG CONVERTERS: Binary weighted resistor type – R-2R		
		ladder type – Specifications and applications of DA converter		
	6.2	ANALOG TO DIGITAL CONVERTER: Comparator type - Successive		
		approximation type - Dual slope AD converter - Specifications and		
		applications of AD converter		

Unit 7	Logic Families			
	7.1	Introduction to digital ICs,		
	7.2	TTL logic family - Introduction to TTL logic, Realization of basic		
		gates using TTL logic, TTL NAND gate - Totem pole output, open		
		collector		
	7.3	ECL logic family - Introduction to ECL logic, ECL OR, NOR gate.		
	7.4	MOS families - Introduction to PMOS, NMOS & CMOS logic,		
		Realization of PMOS inverter, NAND, NOR, Realization of NMOS		
		inverter, NAND, NOR, Realization of CMOS inverter, NAND, NOR.		
	7.5	Comparative studies of different type of logic families like DTL, TTL,		
		CMOS, and ECL etc. with the following characteristics: (a) logic levels,		
		(b) power dissipation, (c) fan in and fan out, (d) propagation delay, and,		
		(e) noise immunity, Basic gates using CMOS.		
	7.6	Interfacing of ICs of different logic families - Logic hazards		
	7.7	Study of 7400 TTL series / CD 4000 series gate ICs.		
	TOTAL		60	

Practical:

Skills to be developed:

Intellectual skills:

- 1. Identification of digital IC's of logic gates. Flip-flops, multiplexer and demultiplexers.
- 2. Ability to test different digital ICs.
- 3. Ability to design the combinational and Sequential logic circuits.

Motors skills:

- 1. Ability to build the circuit.
- 2. To observe the result and handling the equipments.
- 1. To verify the truth table of NOT, OR, AND, NAND, NOR, XOR, X-NOR with TTL logic gates and CMOS logic gates.
- 2. To realize different Boolean expressions with logic gates.
- 3. To realize half-adder, full-adder, subtractor, parallel and serial full-adder.
- 4. To design 1's complement, 2's complement and 9's complement adder-subtractor.
- 5. To implement encoder, decoder, multiplexer and demultiplexer.
- 6. To construct parity generator and checker & comparator.
- 7. To verify the function of SR, D, JK and T Flip-flops.
- 8. To construct binary synchronous and asynchronous counter.
- 9. To design programmable up / down counter.
- 10. To design controlled shift register and study their function.
- 11. To study different memory ICs.
- 12. To study DA and AD converters.
- **13**. To interface TTL and CMOS ICs.

Mini Projects:

- 1. Design 1 digit BCD to 7 segment decoder using IC7447.
- 2. Design 4 bit binary adder/subtractor using IC7483.
- 3. Design 4 bit synchronous counter using IC7476.
- 4. Design decade counter using IC7492/93.

EXAMINATION SCHEME (Theoretical)

A) Internal Examination: Marks- 20

C) **Teacher's Assessment: Marks- 10** (i) Marks on Attendance: 05

- B) End Semester Examination: Marks-70
- (ii) Assignments & Interaction: 05

	(ii) Assignments & Interaction. 05					
Group	Unit	Objective questions			Total Marks	
		Note: 10 multiple choice	Note: 10 multiple choice and 5 short answer type questions			
		To be set Multiple Choice	To be answered	Marks per		
		(Twelve questions)		question		
А	1,2,3	4				
В	4,5	4	Any ten	1	10 X 1 = 10	
С	6,7	4				
		To be set short answer type	To be answered	Marks per		
		(Ten questions)		question		
А	1,2,3	4				
В	4,5	4	Any five	2	5x2=10	
С	6,7	2				

Group	UNIT	Subjective Questions			Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	4	A my firm (Talving at least		
В	4,5	3	Any five (Taking at least	10	$10 \ge 5 = 50$
С	6,7	3	one from each group)		

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes. Note 2 : Assignments may be given on all the topics covered on the syllabus.

E X A M I N A T I O N S C H E M E (SESSIONAL)

Name of Subject: Digital Electronics Laboratory Subject Code:ETCE/LDE/S3

Full Marks - 75

1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job – 15, Notebook – 10.

External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job – 35, Viva-voce – 15.

	Text Books:		
Sl. No.	Name of the Author	Title of the book	Name of the Publisher
1.	G K Kharate	Digital Electronics	OXFORD
2.	Anil K. Maini	Digital Electronics	Wiley
3.	P Raja	Digital Electronics	SCITECH
4.	Malvino & Leach	Digital Principles and Applications	Tata McGraw-Hill
5.	Jain	Modern Digital Electronics	Tata McGraw-Hill
6.	Taub & Schilling	Digital Electronics	Tata McGraw-Hill
7.	V. K. Puri	Digital Electronics	Tata McGraw-Hill
8.	S. Salivahnan & A.	Digital Circuits and Design	Vikash Publishing House
	Arivazhgan		
9.	Yarbrough	Digital Logic Applications and	Vikash Publishing House
		Design	
10.	Morris Mano	Digital Logic and Computer Design	Pearson
11.	V. Kumar	Digital Technology	New Age Publishers

Course Code: ETCE/ CPGM/ S3	Semester: Third
Duration: One Semester (Teaching-15 weeks	Maximum Marks: 50
+ Internal Exam-2 weeks)	
Teaching Scheme:	Examination Scheme
Theory: 2 contact hrs./ week	Class Test (Internal Examination): 10 Marks
Tutorial: Nil	Teacher's Assessment (Attendance, Assignment & interaction):
	05 Marks
Practical: 1 contact hours/ week	End Semester Examination: 35 Marks
Credit: 3 (Three)	Practical: 50 Marks

Rationa	ale:
S1.	
No.	
1.	Programming concept finds utility in understanding of high-level language, low-level language and the
	subjects like Microprocessor, Microcontroller, PLC etc. This subject covers from the basic concept of C to
	the arrays and function in C. This subject will act as "programming concept developer" for students. It
	will also become helpful to understand various application Software such as Matlab, Pspice etc.
Objecti	ve:
S1.	The students will be able to:
No.	
1.	Define program and programming
2.	Briefly understand compiler, interpreter, linker and loader function.

3.	Understand algorithm and learn the different ways of stating algorithms.					
4.	Understand the basic structure of a program in C					
5.	Learn the data types, variables, constants, operators etc.					
6.	Get to know the input and output streams that exist in C to carry out the input output task.					
7.	Learn about decision type control construct and looping type control constructs in C					
8.	Learn about one dimensional array.					
9.	Understand what a function is and how its use benefits a program					
Pre-Re	quisite:					
S1.	~					
No.						
1.	Basic units of computer system					
	Contents (Theory)	Periods	Marks			
	Group –A					
Unit: 1	Introduction to Programming and overview of C	04				
	1.1 CONCEPT OF PROGRAMMING LANGUAGES AND EXAMPLES					
	1.2 Algorithm and flowcharts					
	1.3 Compiler, Interpreter, Loader, and Linker					
	1.4 Source Code and Object Code					
	1.5 Place of C in computer language					
	1.6 Basic Structure of C					
Unit: 2 Types, Operator & Expression 08						
	2.1 3. C character set, tokens, constants, variables. keywords					
	2.2 PRIMARY DATA TYPES – their equivalent keywords and declaration					
	2.3 OPERATORS: Arithmetic - Increment - Decrement - Relational -					
	Logical – Conditional – Bit Wise					
	2.4 Assignment statement- C expressions-operator precedence					
	2.5 UNFORMATTED I/O FUNCTIONS: getchar () – getch () — putchar () –					
	putch () – gets () –puts()					
	FORMATTED CONSOLE I/O: printf() – scanf()					
Unit: 3	Control Flow (Decision Making)	06				
	5.1 Introduction					
	5.2 IF-ELSE statement					
	5.3 Looping : FOR, WHILE and DO-WHILE statements					
	5.4 BREAK, CONTINUE and GOTO statements.					
	5.5 Simple Program					
	Group-B					
Unit 4	Arrays & Pointers	08				
	6.1 Introduction					
	6.2 Declaration and initialization of Array					
	6.3 Accessing of array elements and other allowed operations.					
	6.4 Simple program with a one dimensional array					
	6.5 Understanding pointers, declaring and accessing pointer ,'&' and '*'					
	operators					

	6.6 Pointer expressions – Pointer assignments – Pointer arithmetic				
Unit 5	Function	06			
	7.1 The concepts of functions				
	7.2 Using functions : i) Function Declaration, ii) Function Definition, iii)				
	Function Call				
	7.3 Simple program				
		32			
	Total				
	Contents (Pra	actical)			
S1.	Skills to be developed				
No.					
1.	Intellectual Skills:				
	Practical:				
	Skills to be developed:				
	1. Use of programming language constructs in program implementation.				
	2. Improvement of Logical thinking capability				
	3. To be able to apply different logics to solve given problem.				
	4. To be able to write program using different implementations for the same	problem			
5. Study different types of errors as syntax semantic, fatal, linker & logical					
	6. Debugging of programs				
	7. Understanding different steps to develop program such as				
	 Problem definition 				
	 Analysis 				
	 Design of logic 				
	 Coding 				
	 Testing 				
	 Modifications and error corrections of programming language 				
2.	Motor Skills:				
	i) Operate various parts of computer properly.				
	ii) Problem solving skills.				
	iii) Draw Flow charts				
List o	f Laboratory Experiments:				
S1.					
No.					
	Write algorithm, Draw Flow chart, and Write programming codes in C on follo	wing topics			
1.	To find the sum and identify the greater number between any two numbers.				
2.	To interchange the numeric values of two variables.				
3.	Take three sides of a triangle as input and check whether the triangle can be draw	n or not. If possible,			
	classify the triangle as equilateral, isosceles, or scalene				
4.	To test whether the given character is vowel or not.				
5.	To find sum of the digits of an integer .				
6.	To find the roots of a quadratic equation.				
7.	To check whether an input number is palindrome or not.				
8.	To find the G.C.D and L.C.M of two numbers.				

9.	To find the factorial of given number.
10.	To find the sum of n natural numbers.
11	To accept 10 numbers and make the average of the numbers
12	To accept 10 elements and sort them in ascending or descending order.
13.	To find the summation of three numbers using function.
14	To find the maximum between two numbers using function

Examination Scheme (theoretical):

A) Internal Examination: Marks- 10

C) Teacher's Assessment: Marks- 5

- B) End Semester Examination: Marks-35
- (i) Marks on Attendance(ii) Assignments & Interaction

Group	Unit	Objec	Total Marks		
		Note: 10 multiple choice			
		To be set Multiple Choice	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	6	Any civ	1	6 V 1 – 6
В	4,5	4	Ally Six	1	$0 \land 1 = 0$
		To be set short answer type	To be answered	Marks per	
		(eight questions)		question	
А	1,2,3	3			
В	4,5	3	Any four	1	4x1=4

Group	UNIT	Subjective Questions			Total Marks
		To be set	To be answered	Marks per	
		(Ten questions)		question	
А	1,2,3	5	Any five (Taking at least	5	5 V 5 - 25
В	5,6	3	two from each group)	5	$3 \times 3 = 23$

Note 1 : Teacher's assessment will be based on performance on given assignments & quizzes.

Note 2 : Assignments may be given on all the topics covered on the syllabus.

EXAMINATION SCHEME (SESSIONAL)

Name of Subject: Computer Programming Language LaboratoryFull Marks - 50Subject Code: ETCE/LCPGM/S3Full Marks - 50

- Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job – 15, Notebook – 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 15.

Text Books:					
Sl. No.	Name of the Author	Title of the book	Name of the Publisher		
1.	Balgurusamy	Programming in 'C'	Tata Mc-Graw Hill		
2.	Kanetkar	Let's 'C'	BPB		
3.	Herbert Shieldt	Complete reference C	Tata Mc-Graw Hill		
4.	Kernigham & Ritchie	The C Programming Language	Mc-Graw Hill		
5.	H. Schieldt	C Made Easy	McGraw Hill		
6.	T. Jeyapoovan	A first course in programming with C	Vikash Publishing House		
7.	E Balaguruswamy	Programming in ANSI C (edition 2.1)	Tata McGraw-Hill		

1. Websites:

- <u>http://cplus.about.com/od/beginnerctutoriali/a/blctut.htm</u>
- <u>http://computer.howstuffworks.com/c.htm</u>
- Objective questions:
 - 1. <u>http://www.indiastudycenter.com/studyguides/sc/objtest/default.asp</u>

Demo lectures with power point presentations using LCD projector should be arranged to develop programming concepts of students.

Name of the course: Electrical Machine			
Course Code: ETCE/EM/S3	Semester: Third		
Duration: One semester (Teaching-15 weeks +	Maximum Marks: 50		
Internal Exam-2 weeks)			
Teaching Scheme:	Examination Scheme :		
Theory: 2 contact hrs./ week	Internal Examination (: 10 Marks		
Tutorial:	Teacher's Assessment (Attendance, Assignment & interaction): 5		
	Marks		
Practical: 1 contact hours/ week	End Semester Examination: 35 Marks		
Credit: 3			
Rationale:			

This subject is restricted to second year diploma in Electronics & Telecommunication. Technicians / supervisors from all branches of engineering. They are expected to have some basic knowledge of major electrical equipments. Also the technicians working in different engineering fields have to deal with various types of electrical drives and equipment. Hence, it is necessary to study electric circuits, different types of electrical drives, their principles and working characteristics.

This subject covers analysis of ac and dc networks, working principles of commonly used ac and dc motors and their characteristics. The basic concepts studied in this subject will be very useful for understanding of other higher level subjects in further study.

Objectives:

The student will be able to-

- 1. Know importance, working and construction of single phase transformer
- 2. Explain construction, working, performance and applications of various types of DC Genrators and DC motors
- 3. Understand the idea of Polyphase circuits and star-delta connections
- 4. Gain principle of induction motor and construction
- 5. Identify and describe electrical hazards and precautions that should be taken to avoid injury in the workplace constituting electrical machine. Concept of electrical earthing.

Content (Name of topic)			Marks
	Group-A		
Unit 1	DC Generators	7	
	1.1 Working principles, construction & types of dc generator		
	1.2 Armature winding types - Lap & Wave winding		
	1.3 E.m.f equation, Methods of building up of e.m.f. (Numerical)		
	1.4 Efficiency of DC generator, Losses in a generator, Condition for maximum		
	efficiency		
Unit 2	D.C. Motors	7	
	2.1 Motor principle: Comparison of generator and motor action		
	2.2 Significance of back EMF and voltage equation of a motor		
	2.3 Motor characteristics: Torque Vs Armature current, Speed Vs Torque of a		
	series, Shunt and compound motor.		
	2.4 Losses and efficiency of a DC motor		
	2.5 Various methods adopted to control speed of a DC motor: Electric braking of		
	a shunt motor, Electric braking of series motor		
	2.6 Application		
	Group-B		
Unit 3	Transformer	7	
	3.1 Working principle of transformer, classification, brief description		
	3.2 of each part its function and material used.		
	3.3 Emf equation (no derivation)		
	3.4 Voltage ratio, current ratio and transformation ratio.		
	3.5 kVA rating of a transformer		
	3.6 Equivalent circuit of transformer		
	3.7 Transformer tests: Open circuit or no load test, Short circuit or impedance test.		
	3.8 Losses in a transformer		
	3.9 Efficiency and regulation of transformer- definition, equation and simple		
	numerical on it)		
	3.10 Condition for maximum efficiency (no derivation)		

Unit 4	Polyphase circuits		6			
	4.1 Advantages of 3 phase syste	em over 1 phase system				
	4.2 Principle of 3-phase e.m.f g	eneration and its wave form				
	4.3 concept of phase sequence a	and balanced and unbalanced load				
	4.4 Relation between phase and	l line current, phase and line voltage in	star			
	connected and Delta connected balanced system. (no derivation)					
	4.5 Calculation of current, power, power factor in a 3 phase balanced					
	system (simple numerical)					
Unit 5	Total construction, Operating princip	e and application of 3 phase induction	motor 2			
Unit 6	Electric hazards, Safety, Protectio	ons and Earthing	3			
	5.1 Electric Shock, Effects of Elect	rical Current On the Human Body, E	lectrical			
	Emergencies- actions to be take	n when an electrical emergency arises.				
	5.2 Earthing – Necessity of eart	hing, types of earthing (name only), Earth			
	resistance values, Eventualitie	s in case of failure of earthing, C	Common			
	electricity rules regarding earth	ing (related to electrical installation of	lighting			
	& machines only).					
	TOTAL		32			
Practical	1					
Skills to b	e developed:					
Intellectu	al skills:					
1. Analyti	cal skills.					
2. Identifi	2. Identification skills.					
Motor ski	ills:					
1. Measur	ement (of parameters) skills.					
2. Connec	tion (of machine terminals) skills.					
List of Pr	actical:					
1 6		(
1. 3	1. Study the construction features of DC Machine					
2. 1	2. To control the speed of D.C. shunt motor above normal speed & draw the speed characteristics.					
5. I	to control the speed of D.C. shuft mote	or below normal speed & draw the spee				
4. 5	4. Study of three point and four point starter					
5. 1	o determine equivalent circuit param	S.C. test.				
S	S.C. test.					
S Text book	S.C. test.					
S Text book	S.C. test. xs: Titles of Book	Name of Author	Name of Publisher			
SI. No.	S.C. test. S.C. test. S.C. test. Electrical Machines	Name of Author S.K.Bhattacharya	Name of Publisher T.M.H Publishing Co. Ltd.			
S Text book Sl. No. 1. 2.	S.C. test. SS: Titles of Book Electrical Machines Electrical Technology- Vol-II	Name of Author S.K.Bhattacharya B.L.Thereja	Name of Publisher T.M.H Publishing Co. Ltd. S.Chand			

4.	Electrical Machines	J.B.Gupta	S.K.Kataria & Sons.	
5.	Principles of Electrical Machines	V.K.Mehta, Rohit Mehta	S. Chand	
6.	Electrical Machinery	P.S.Bhimbra	Khanna Publisher	
7.	Electrical Machines	M.N.Bandyopadhyay	P.H.I. Pvt. Ltd.	
8.	Electrical Machines	Ashfaq Husain	Dhanpat Rai & Co.	
9.	Principles of Electrical Machines and Power Electronics	P.C.Sen	Wiley India	
10.	Fundamentals of Electrical Machines	B.R.Gupta & V.Singhal	New Age Publisher	
11.	Electrical Machines	Nagrath & Kothari	T.M.Hill	
12.	Electrical Technology	H.Cotton	C.B.S. Publisher New Delhi	
13.	Electrical Machines	Smarajit Ghosh	Pearson	
14.	Electrical Technology	E.Huges	ELBS	
15.	Electrical Technology	H. Cotton	Pitman	
16.	A Course in Electrical & Electronics Measurement & Instrumentation	A.K.Sawhney	Dhanpat Rai & Sons	

E X A M I N A T I O N S C H E M E (THEORETICAL)

A) Internal Examination: Marks- 10

C) Teacher's Assessment: Marks- 5

B) End Semester Examination: Marks-35

(i) Marks on Attendance

(ii) Assignments & Interaction

Group	Unit	Objective questions			Total Marks
		Note: 10 multiple choice	and 5 short answer	type questions	
		To be set Multiple Choice (Ten questions)	To be answered	Marks per question	
А	1,2	4	A -	1	
В	3,4,5,6	6	Any six	1	6 X I = 6
		To be set short answer type (eight questions)	To be answered	Marks per question	
А	1,2	3			
В	3,4,5,6	3	Any four	1	4x1=4

Group	Unit	Subjective Questions			Total Marks
		To be set Multiple	To be answered	Marks per	
		Choice		question	
		(Ten questions)			
А	1,2	3	Any five (Taking at least	5	5 V 5 - 25
В	3,4,5,6	3	two from each group)	5	$3 \times 3 = 23$

E X A M I N A T I O N S C H E M E (SESSIONAL)

Subject: Electrical Machine Laboratory Code: ETCE/LEM/S3

Full Marks-50

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Third Semester. Distribution of marks: Performance of Job 15, Notebook 10.
- External Assessment of 50 marks shall be held at the end of the Third Semester on the entire syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the course: Professional Practice-I		
Course Code: ETCE/PP-II/S3	Semester: Third	
Duration: 17 weeks (Teaching-15 weeks +	Maximum Marks: 50	
Internal Exam-2 weeks)		
Teaching Scheme:	Examination Scheme :	
Theory: Nil	Internal Teachers' Assessment: 50 Marks	
Tutorial:		
Practical: 2 contact hours/ week	End Semester Examination: Nil	
Credit: 2		
Rationale:		

In addition to the exposure both in theoretical and practical from an academic institution, it is desired that student should be familiar with the present day industry working environment and understand the emerging technologies used in these organisation. Due to globalization and competition in the industrial and service sectors, acquiring overall knowledge will give student an better opportunity for placement facility and best fit in their new working environment.

In the process of selection, normal practice adopted is to see general confidence, positive attitude and ability to communicate, in addition to basic technological concepts.

The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

Objectives:

The student will be able to-

Student will be able to:

- 1. Acquire information from different sources.
- 2. Enhance creative skills
- 3. Prepare notes for given topic.
- 4. Present given topic in a seminar.
- 5. Interact with peers to share thoughts.
- 6. Understand software for designing electronics circuits
- 7. Acquire knowledge of designing and maintenance of Electronics circuits, PCB and relevant software
- 8. Acquire knowledge on Open Source Software and its utility
- 9. Understand application of technologies in industry scenario.
- 10. Prepare a report on industrial visit, expert lecture.

Content (Name of topic)		Periods	Marks
Group-A			
Unit 1	Field Visits	12	
	Structured field visits (minimum three) be arranged and report of the same		
	should be submitted by the individual student, to form a part of the term work.		
	The field visits may be arranged in the following areas / industries:		
	i) Power supply/UPS/SMPS/Inverter manufacturing unit		
	ii) Electronics Instruments calibration laboratories		
	iii) Residential building for Electronic security systems		
	iv) Small hydro power station		
	v) Wind mill		
Unit 2	Lectures by Professional / Industrial Expert to be organized from of the	10	
	following areas (any four)		
	i) Non conventional energy sources		
	ii) Open Source Software- an introduction and Practice session		
	with Libre Office		
	Introduction to Libre Office Writer		
	Introduction to Libre Office Calc		
	Introduction to Libre Office Impress		
	Introduction to Libre Office Base		
	Introduction to Libre Office Math		
	Introduction to Libre Office Draw		
	iii) OSCAD - Open Source EDA tool for circuit design, simulation		
	and PCB design.		
	iv) Water pollution control		
	v) Mobile communication		
	vi) Various government schemes such as EGS,		
	vii) Industrial hygiene.		
	viii) Recent innovations of electronic gadgets in daily life		
	Seminar :	10	
	Any one seminar on the topics suggested below:		
	Students (Group of 4 to 5 students) has to search /collect information about the		
	topic through literature survey, visits and discussions with experts / concerned		
	persons:		
	Students will have to submit a report of about 10 pages and deliver a seminar for		
	10 minutes.		
	1. Water supply schemes/Problems of drinking water in rural area		
	2. Problems related to traffic control		
	3. Electronic rolling display		
	4. Electronic systems used in Multiplex		
	5. Pani Panchayat Yojana for equal distribution of water		
	6. Any other suitable topic		
	TOTAL	32	

Sl No.	Titles of Book	Name of Author	Name of Publisher
1.	OSCAD	Yogesh Save, Rakhi R, Shambhulingayyan N.D., Rupak M Rokade, Ambikeswar Srivastava, Manas Ranjan Das, Lavita Pereira, Sachin Patil, Srikant Patnaik, Kannan M. Moudgalya	Shroff Publisher & Distributor

Reference book for OSCAD

Website: (i) http://oscad.in

(ii) http:/spoken-tutorial.org of Indian Institute of Technology, Bombay (for more detail about Open source Software such as Libre Office, OSCAD and the like) which is a part of National Mission on Education through ICT, MHRD Govt. of India.

Demo lectures with power point presentations using LCD projector should be arranged for developing concepts on various topics.