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We propose a learning-based, single-image super-resolution reconstruction technique using the contourlet transform, which is
capable of capturing the smoothness along contours making use of directional decompositions. The contourlet coefficients at finer
scales of the unknown high-resolution image are learned locally from a set of high-resolution training images, the inverse con-
tourlet transform of which recovers the super-resolved image. In effect, we learn the high-resolution representation of an oriented
edge primitive from the training data. Our experiments show that the proposed approach outperforms standard interpolation
techniques as well as a standard (Cartesian) wavelet-based learning both visually and in terms of the PSNR values, especially for
images with arbitrarily oriented edges.
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1. INTRODUCTION

In most imaging applications, images with high spatial reso-
lution are desired and often required. Resolution enhance-
ment from a single observation using image interpolation
techniques is of limited application because of the aliasing
present in the low-resolution (LR) image. Super-resolution
refers to the process of producing a high spatial resolu-
tion image than what is afforded by the physical sensor
through postprocessing, making use of one or more low-
resolution observations. It includes upsampling the image,
thereby increasing the maximum spatial frequency, and re-
moving degradations that arise during the image capture,
namely, aliasing and blurring. In general, there are two
classes of super-resolution techniques: reconstruction-based
and learning-based. In reconstruction-based techniques the
high-resolution (HR) image is recovered from several low-
resolution observations of the input, but in learning-based
super-resolution algorithms a database of several other im-
ages are used to obtain the high-resolution image.

The single-frame image super-resolution problem arises
in several practical situations. In many biometric databases,
a large number of images of similar content, shape, and size
are available. For example, in investigative criminology one
has available face and fingerprint databases. These are of-
ten taken in a controlled environment. The question we ask
is that if one encounters a poor-quality input image, can it
be enhanced using the knowledge of the properties of the
database images. Thus, the basic problem that we solve in

this paper is as follows. Given a single low-resolution input
image and a database of several high-resolution images, we
obtain a high-resolution output. We make use of the recently
proposed contourlet transform [1] to learn the best features
from the database of high-resolution images while upsam-
pling the input image. The features we learn from the HR
database are the HR representation of LR-oriented edges in
the image to be super-resolved.

The remainder of the paper is organized as follows.
In Section 2 we review some of the prior work in
super-resolution imaging including those dealing with the
learning-based methods. We discuss the model for the for-
mation of a low-resolution image in Section 3. The theory
of discrete contourlet transform and the learning procedure
for estimating the contourlet coefficients at finer scales using
high-resolution training images are the contents of Section 4.
We present experimental results on different types of images
in Section 5, and the paper concludes with Section 6.

2. RELATED WORK

Numerous reconstruction-based super-resolution algo-
rithms have been proposed in the literature. The super-
resolution idea was first proposed by Tsai and Huang
who used the frequency-domain approach [2]. A different
approach to the super-resolution restoration problem was
suggested by Irani and Peleg [3, 4] based on the iterative
back projection method. A set-theoretic approach to the
super-resolution restoration problem was suggested in [5].
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The main result there is to define convex sets which represent
tight constraints on the solution to improve the results. Ng
et al. developed a regularized, constrained, total least squares
solution to obtain a high-resolution image [6]. They con-
sider the presence of perturbation errors of displacements
around the ideal subpixel locations in addition to noisy
observations. The effect of the displacement errors on the
convergence rate of an iterative approach for solving the
transform-based preconditioned system of equations is
discussed by Ng and Bose [7]. They also develop a fast
restoration algorithm for color images in [8]. Nguyen et
al. proposed circulant block preconditioners to accelerate
the conjugate gradient descent method while solving the
Tikhonov-regularized super-resolution problem [9]. A max-
imum a posteriori (MAP) estimator with Huber-Markov
random field (MRF) prior is described by Schultz and
Stevenson in [10]. Other approaches include a MAP-MRF-
based super-resolution technique using the blur as a cue
[11]. In [12], the authors recover both the high-resolution
scene intensity and the depth fields simultaneously using
the defocus cue. Elad and Feuer [13] proposed a unified
methodology for super-resolution restoration from several
geometrically warped, blurred, noisy, and down-sampled
measured images by combining maximum likelihood (ML),
MAP, and projection onto convex sets (POCS) approaches.
In [14] Lin and Shum determine the quantitative limits
of reconstruction-based super-resolution algorithms and
obtain the upsampling limits from the conditioning analysis
of the coefficient matrix.

Now we review some of the recent works under the
learning-based super-resolution category. In [15] Baker and
Kanade develop a super-resolution algorithm by modifying
the prior term in the cost to include the results of a set of
recognition decisions, and call it recognition-based super-
resolution or hallucination. Their prior enforces the condi-
tion that the gradient in the super-resolved image should be
equal to the gradient in the best matching training image.
Authors in [16] have proposed a super-resolution technique
from multiple views using learned image models making use
of principal component analysis (PCA). Their method uses
learned image models either to directly constrain the maxi-
mum likelihood (ML) estimate or as a prior for a MAP esti-
mate. In [17] Freeman et al. proposed a parametric Markov
network to learn the statistics between the “scene” and the
“image,” as a framework for handling low-level vision tasks,
one application of which is super-resolution. An image anal-
ogy method applied to super-resolution is discussed in [18].
Joshi and Chaudhuri [19] have proposed a learning-based
method for image super-resolution from zoomed observa-
tions. They model the high-resolution image as a Markov
random field (MRF), the parameters of which are learned
from the most zoomed observation. The learned parameters
are then used to obtain a maximum a posteriori (MAP) esti-
mate of the high-resolution image.

In [20], we have proposed a single-frame super-resolu-
tion algorithm using a wavelet-based learning technique
where the HR edge primitives are learned from the
HR data set locally. An eigenface-domain super-resolution

reconstruction algorithm for face recognition is proposed
in [21]. In the face hallucination technique proposed in
[22], the authors use both low- and high-resolution image
databases to recover the high-resolution image, making use
of PCA. They also add constraints to the principal com-
ponents to reduce the nonface-like distortion. The use of
PCA for image zooming purposes has been investigated in
[23]. It has been assumed that the principal components re-
main unchanged across the scale. The method is applica-
ble only to zooming up of images of a specific class of ob-
jects such as faces or fingerprints. Pickup et al. [24] present
a domain-specific image prior in the form of a distribution
function based upon sampled images, and show that for cer-
tain types of super-resolution problems, this sample-based
prior gives a significant improvement over other common
multiple-image super-resolution techniques.

In [25] Chang et al. have proposed a single-frame image
super-resolution method where the generation of the high-
resolution image patch depends simultaneously on multi-
ple nearest neighbors in the training set in a way simi-
lar to the concept of locally linear embedding for manifold
learning. This method requires fewer training examples than
other learning-based super-resolution methods. The super-
resolution method proposed in [26] is the extension of a
Markov-based learning algorithm, capable of processing an
LR image with unknown degradation parameters. A differ-
ent method for enhancing the resolution of LR facial images
using an error back projection method based on top-down
learning is proposed in [27]. Here a face is represented by a
linear combination of prototypes of shape and texture. An
image hallucination approach based on primal sketch priors
is presented in [28]. Here a reconstruction constraint is also
applied to further improve the quality of the hallucinated im-
age. In [29], the super-resolution reconstruction problem is
considered as a binary classification problem and is solved
through class conditional probability estimation.

Most of the learning-based super-resolution methods
proposed above either make use of a database of low- and
high-resolution training images of similar objects or use an
appropriate smoothness constraint along with the learning
prior to improve the results. In our method we use instead an
arbitrary set of high-resolution training images. Also we do
not use any smoothness constraint as we use the contourlet
transform which has the capability to capture smoothness
along contours, while learning the best edge primitives from
the HR training set. The proposed method is edge-based and
involves learning the edge pattern locally instead of the global
PCA-based approach. As a result, our method is faster and re-
sults show considerable improvement over a regularization-
based approach.

3. LOW-RESOLUTION IMAGE FORMATION MODEL

It is assumed that the observed low-resolution image is pro-
duced from a single high-resolution image under the fol-
lowing generative model. Let z represent the lexicographi-
cally ordered high-resolution image of N2 × 1 pixels. If y is
the M2×1 lexicographically ordered vector containing pixels
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from the low-resolution observation, then it can be modeled
as

y = DBz + n, (1)

where D is the decimation matrix, size of which depends on
the decimation factor and B is the blur matrix. For a decima-
tion factor of q, N = qM and the decimation matrix D con-
sists of q2 nonzero elements of value 1/q2 along each row at
appropriate locations and has the form [10] (using a proper
reordering of z)

D = 1
q2

⎡
⎢⎢⎢⎢⎣

11 . . . 1 0
11 . . . 1

. . .
0 11 . . . 1

⎤
⎥⎥⎥⎥⎦
. (2)

As an example, for a decimation factor of q = 2 and with
lexicographically ordered z of size, say 16×1, the D matrix is
of size 4× 16 and can be written as (without reordering z)

D = 1
4

⎡
⎢⎢⎢⎣

1100110000000000
0011001100000000
0000000011001100
0000000000110011

⎤
⎥⎥⎥⎦ . (3)

In (1), n is the M2 × 1 noise vector. We assume the noise
to be zero mean but no specific distribution is assumed in
this work. The low-resolution image formation model is il-
lustrated in Figure 1. The problem we investigate in this pa-
per is as follows. Given a single instance of y, obtain an esti-
mate of the high-resolution image z. We assume in this paper
B to be an identity matrix. Also, since we are using only a sin-
gle observation, no effort is made to reduce the effect of noise
(see (1)) in case the original LR image does suffer from noise
perturbations. Since the matrix D is not invertible, an arbi-
trary set of high-resolution images is used as training data to
recover z.

4. CONTOURLET-BASED LEARNING

4.1. Contourlet transform

The contourlet transform [1, 30] is an extension of the Carte-
sian wavelet transform in two dimensions using multiscale
and directional filter banks. The contourlet expansion of im-
ages consists of basis images oriented at various directions
in multiple scales, with flexible aspect ratios. Thus the con-
tourlet transform retains the multiscale and time-frequency
localization properties of wavelets. In addition, it also offers
a high degree of directionality. Thus they are capable of cap-
turing the geometrical smoothness of the contour along any
possible direction. The contourlet transform does not use
separable basis functions. The idea here is not to decompose
an image into horizontal and vertical edges, but to capture
the edges normal to the contour present in the image.

The contourlet transform is implemented in two stages:
the subband (spectral) decomposition stage and the direc-
tional decomposition stages. For the subband decomposition
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Figure 1: Illustration of low-resolution image formation model.
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Figure 2: The Laplacian pyramid decomposition. The outputs are a
coarse approximation c and a difference d between the original and
the prediction.

stage we use the Laplacian pyramid introduced by Burt and
Adelson [31] where the decomposition at each step generates
a sampled lowpass version of the original and the difference
between the original image and the prediction as shown in
Figure 2. The input image x is first lowpass filtered using fil-
ter H and then decimated to get a coarse approximation c.
This is then interpolated and passed through the synthesis
filter G. The resulting image is then subtracted from the orig-
inal image x to obtain the bandpass image d. The process is
then iterated on the coarser version of the image c.

The directional filter bank (DFB) is efficiently imple-
mented by using an m-level binary tree decomposition that
leads to 2m subbands with wedge-shaped frequency parti-
tioning as shown in Figure 3(a). The original construction
of the DFB proposed in [32] involves modulating the input
image and uses quincunx filter banks with diamond-shaped
filters [33]. The desired frequency partitioning is obtained
by following a tree expanding rule for finer directional sub-
bands as described in [34]. An m-level tree-structured DFB is
equivalent to a 2m parallel channel filter bank with equivalent
filters and overall sampling matrices as shown in Figure 3(b).
The equivalent analysis and synthesis filters are denoted by
Hk and Gk, 0 ≤ k < 2m, respectively, corresponding to the
subbands indexed as in Figure 3(a). The corresponding over-
all sampling matrices will have the following diagonal form
[30]:

Sk =
⎧⎨
⎩

diag
(
2m−1, 2

)
for 0 ≤ k < 2m−1,

diag
(
2, 2m−1

)
for 2m−1 ≤ k < 2m.

(4)

The two sets correspond to the mostly horizontal and
mostly vertical set of directions, respectively. Thus the family
{gk[n − Skl]}0≤k<2m, l∈Z2 obtained by translating the impulse
responses of the equivalent synthesis filters Gk over the sam-
pling lattices Sk, provide a basis for discrete signals in l2(Z2).
This basis exhibits both directional and localization proper-
ties. For a detailed description of contourlet decomposition,
readers are referred to [30, 32, 34].
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Figure 3: (a) An example of the directional filter bank frequency partitioning with m = 3. The subbands 0–3 correspond to the mostly
horizontal directions, while subbands 4–7 correspond to the mostly vertical directions. (b) Multichannel view of an m-level tree-structured
directional filter bank.
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Figure 4: Pyramidal directional filter bank structure that imple-
ments the contourlet transform.

Combining the Laplacian pyramid and the directional fil-
ter bank yields the discrete contourlet transform. The multi-
scale and directional decomposition stages in the contourlet
transform are independent of each other and hence each
scale can be decomposed into any arbitrary power of two
number of directions and different scales into different num-
ber of directions. Figure 4 shows the pyramidal directional
filter bank structure that implements the contourlet trans-
form. Figure 5 shows the three-scale contourlet decomposi-
tion of the Lena image for the purpose of illustration. It may
be noted that the coefficients at the finer scale are no longer
horizontally or vertically oriented as is the case in Cartesian
wavelet decomposition.

4.2. Learning of edge primitives

When an image is interpolated, a region without any edges
does not suffer from any degradation. However, if it con-
tains edges, they get blurred during the upsampling pro-
cess. We plan to learn the mapping of an LR edge (called
edge primitive here) to its HR representation locally from
the training data set during upsampling. Since wavelets are
known to capture the high-frequency details very well lo-
cally, we propose to use wavelets to learn this mapping. In the

Figure 5: Contourlet transform of the Lena image using three
Laplacian pyramidal levels and eight directions at the finest level
and four directions at the coarser levels.

single-frame super-resolution algorithm proposed in [20],
we used a wavelet-based learning technique where the HR
edge primitives are learned from the HR data set locally with
the assumption that a primitive edge element in the HR im-
age is localized to an 8 × 8 pixel area, and the correspond-
ing edge elements over a 4 × 4 pixel area in the LR image.
Each local region is learned independently from the HR data
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set. One of the major difficulties with wavelet-based learning
lies in the fact that the wavelet decomposition kernel is sepa-
rable. Although this provides computational advantages, we
expect to catch only the horizontal and vertical edges prop-
erly. Hence we do not have difficulties in learning horizontal
and vertical edges, but we do have some problem in learn-
ing edges oriented along arbitrary directions. This gave rise
to certain artifacts in the reconstructed image and in order
to get a good-quality super-resolved image, we were forced
to use an appropriate discontinuity preserving smoothness
constraint under a regularization framework. Thus we en-
sure spatial correlation among pixels using the smoothness
constraint, as well as obtain the best matching edges from the
training set using wavelet learning. This required a stochastic
optimization technique to obtain the solution which made
the reconstruction process very slow.

A better way to handle the above situation is to use direc-
tionally selective wavelet decomposition to learn the oriented
edges where the reconstruction problem need not be solved
under a regularization framework, resulting in a much faster
solution. This motivated us to use the contourlet transform
which is capable of catching the smoothness along contours
naturally. With the assumption that a primitive edge element
in the HR image is localized to an 8 × 8 pixel area, and the
corresponding edge elements over a 4×4 pixel area in the LR
image, we learn the contourlet coefficients at finer scales of
the given LR image as described below.

4.3. Learning the contourlet coefficients

Given a low-resolution input image y, we perform a con-
tourlet decomposition consisting of two pyramidal levels and
each pyramidal level is then decomposed into four direc-
tional subbands which yield the decomposition as shown
in Figure 6(a). A three-level decomposition is performed
on all the high-resolution database images and each pyra-
midal level is decomposed into four directional subbands
resulting in the decomposition as shown in Figure 6(b).
Our idea is to learn the contourlet coefficients in the four
directional subbands corresponding to the finest level for
the given low-resolution image (shown with dotted lines
in Figure 6(a)). After learning, effectively we have a three-
level decomposition for the input image, that is, the original
low-level decomposition coefficients plus the learned coef-
ficients at the finer scale. The inverse transform of this will
yield the high-resolution equivalent of the low-resolution in-
put.

Figure 6 illustrates the block schematic of how the con-
tourlet coefficients at finer scales are learned from a set of
K training images using a two-level contourlet decomposi-
tion of the low-resolution test image. As explained earlier, the
high-resolution training images are decomposed into three
pyramidal levels and the test image at each location is com-
pared to the training images in the contourlet domain at two
coarser scales to search for presence of a nearly identical edge
at all possible locations. This is required for extrapolating the
missing contourlet coefficients in the directional subbands
IX–XII for the test image.

0
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Figure 6: Illustration of learning the contourlet coefficients at a
finer scale. (a) A low-resolution image with two-level decompo-
sition. Coefficients in the dotted subbands are to be learned. (b)
A representative high-resolution training set in contourlet domain
with three-level decomposition.

Here the low-resolution image is of size M × M pixels.
Considering an upsampling factor of 2, the high-resolution
image, now has a size of 2M×2M pixels. For each coefficient
in the subbands I–IV and the corresponding 2 × 2 blocks in
the subbands V–VIII, we extrapolate a block of 4 × 4 con-
tourlet coefficients in each of the subbands IX, X, XI, and
XII. In order to do this we exploit the idea from zerotree con-
cept, that is, in a multiresolution system, every coefficient at
a given scale can be related to a set of coefficients at the next
coarser scale of similar orientation [35]. Using this idea we
follow the minimum absolute difference (MAD) criterion to
estimate the contourlet coefficients. We take the absolute dif-
ference locally between the contourlet coefficients in the low-
resolution image and the corresponding coefficients in each
of the high-resolution training images.

The learning process is as follows. Consider the sub-
bands I–VIII of the low-resolution image. Denote the con-
tourlet coefficient at a location (i, j) as d(i, j). Consider the
range 0 ≤ i, j ≤ M/4. The contourlet coefficients dI(i, j),
dII(i, j + M/4), dIII(i + M/4, j), dIV(i + M/4, j + M/4) corre-
sponding to subbands I–IV and 2 × 2 blocks consisting of
dV(k, l), dVI(k, l+M/2), dVII(k+M/2, l), dVIII(k+M/2, l+M/2)
for k = 2i : 2i + 1 and l = 2 j : 2 j + 1 corresponding to
subbands V–VIII in the low-resolution test image and all the
high-resolution training images are considered to learn a 4×4
contourlet block in each of the subbands IX–XII consisting
of unknown coefficients dIX(k, l), dX(k, l + M), dXI(k + M, l),
dXII(k+M, l+M) for k = 4i : 4i+ 3 and l = 4 j : 4 j + 3. Thus,
for a given set of a total of twenty contourlet coefficients in
subbands I–VIII in the low-resolution image, we perform a
search in the two coarser pyramidal levels of all the training
images at all pixel locations for the best match in the MAD
sense and copy the corresponding 4 × 4 contourlet block in
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bands IX–XII to those bands for the test image. In effect, we
use the following equation to find the minimum:

m̂( p̂, q̂)

= arg min
m,p,q

[∣∣dI(i, j)− dI(m) (p, q)
∣∣

+
∣∣dII

(
i + M1, j

)− dII(m)

(
p + M1, q

)∣∣
+
∣∣dIII

(
i, j + M1

)− dIII(m)

(
p, q + M1

)∣∣
+
∣∣dIV

(
i + M1, j + M1

)

− dIV(m)

(
p + M1, q + M1

)∣∣
+ SV + SVI + SVII + SVIII

]
,

(5)

where M1 =M/4 and

SV =
∣∣dV(2i, 2 j)− dV(m) (2p, 2q)

∣∣
+
∣∣dV(2i, 2 j + 1)− dV(m) (2p, 2q + 1)

∣∣
+
∣∣dV(2i + 1, 2 j)− dV(m) (2p + 1, 2q)

∣∣
+
∣∣dV(2i + 1, 2 j + 1)− dV(m) (2p + 1, 2q + 1)

∣∣

(6)

and SVI, SVII, and SVIII are the corresponding sums for sub-
bands VI, VII, and VIII, respectively, and m = 1, 2, . . . ,K .
Here dJ(m) denotes the contourlet coefficients for the mth
training image at the Jth subband. Here m̂( p̂, q̂) denotes the
( p̂, q̂)th location for the m̂th training image that best matches
the test image at (i, j)th location in terms of contourlet coef-
ficients.

Thus we have

dIX(i, j) := dIX(m̂)( p̂, q̂),

dX(i, j) := dX(m̂)( p̂, q̂),

dXI(i, j) := dXI(m̂)( p̂, q̂),

dXII(i, j) := dXII(m̂)( p̂, q̂)

(7)

for (i, j) ∈ (IX −−XII). This is repeated for each coefficient
in subbands I, II, III, and IV of the low-resolution image. In
effect, we find the best matching 8 × 8 edge primitive from
the training data for a given 4× 4 representation in the low-
resolution image through contourlet expansion.

It may be mentioned here that each 4 × 4 region in the
low-resolution image is being learned from different train-
ing images independently. In case the MAD error is quite
large, it signifies that the 4 × 4 block does not find a good
match in the training data, that is, an edge primitive does not
have its corresponding high-resolution representation in the
database. Such spurious learning will introduce unwanted
artifacts in the reconstructed image. In order to avoid such
artifacts, we accept the contourlet coefficients only when the
MAD is less than a chosen threshold. The goodness of the
learning depends on how extensive and useful the training
data set is. The subband 0 corresponds to the coarsest reso-
lution (see Figure 6(a)) in the contourlet decomposition and
since the corresponding training set may have different aver-
age brightness, including the pixels from the 0-band does not
yield a good match of an edge primitive as we want the edges
to be brightness independent. Hence, we refrain from using
the 0th band while learning.

In our experiments we used “9–7” biorthogonal filters
[36] for the Laplacian pyramid because they are close to be-
ing orthogonal and also because of their linear phase charac-
teristics. For the directional filter banks we used the “23–45”
biorthogonal quincunx filters designed by Phoong et al. [37]
and modulated them to obtain the biorthogonal fan filters.
These filters are also nearly orthogonal and have linear phase
response.

The complete learning-based resolution enhancement
procedure is summarized below in terms of the steps in-
volved.

Step 1. Perform two-level contourlet decomposition with
four directional subbands on the low-resolution test image
of size M ×M and three-level decomposition on all training
images each of size 2M × 2M.

Step 2. Consider the contourlet coefficients at locations (i, j),
(i, j+M/4), (i+M/4, j), and (i+M/4, j+M/4) in subbands I,
II, III, and IV and the corresponding 2×2 blocks in V–VIII of
the low-resolution image as well as the high-resolution train-
ing set.

Step 3. Obtain the sum of absolute difference between the
contourlet coefficients in the low-resolution image and all
the coefficients for each of the training images. Obtain the
best match.

Step 4. If MAD < threshold, obtain the unknown high-
resolution contourlet coefficients (4×4 block) from the train-
ing image offering the best match locally in subbands IX–XII,
else set them all zeros.

Step 5. Repeat Steps 2–4 for every contourlet coefficient in
bands I–IV of the low-resolution image.

Step 6. Perform inverse contourlet transform to obtain the
high-resolution image of the given test image.

It may be noted that we have explained the super-
resolving procedure for the special case when the image is de-
composed into 4 directional components at each resolution.
The same procedure remains valid if we prefer to have de-
composition into 8 or 16 directional components. However,
some of the notations and equations used in this section need
to be properly adjusted. A few comments about the learning
at the finest level of the contourlet coefficients are in order
now. The finest-level contourlet coefficients are estimated us-
ing nearest neighbor criterion from the training images. The
process is not adaptive in the sense that no adaptive updating
of these coefficients is performed based on previously learned
values at a given location or from its neighborhood. Further-
more, there is no reinforcement of the learned coefficients
through posterior analysis. This may yield inferior values of
the coefficients, but the advantage is that one does not have
to worry about the convergence issues. A similar learning
procedure is typically adopted in other learning-based tech-
niques in super-resolution.

In this study we select a 4 × 4 edge primitive in the
low-resolution image for learning the coefficients. A smaller
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: (a) A low-resolution tiger image, (b) original high-resolution image, (c) bicubic interpolated image, (d) super-resolution using
wavelet learning without smoothing, (e) super-resolution using wavelet learning with smoothing, (f) the super-resolved image using the
proposed approach, (g) zoomed up portion of the marked region from (c), and (h) zoomed up portion of the marked region from (f).

primitive could provide a better localized result, but more
spurious matches negate the advantage. A larger primitive
yields better matches in the coefficient, but the localization
is poor and suffers from severe blockiness. Furthermore, the
requirement for the training data size goes up drastically.

An inherent drawback of the proposed learning method
is that the learning process is very much resolution depen-
dent. If we want to super-resolve a 2 m/pixel satellite image by
a factor of q = 2, the training data must be of 1 m/pixel res-
olution. If one wants to perform super-resolution on a 2.5 m
image, none of the images in existing database could ideally
be used for training. For a commercial camera, if we change
the zoom factor, it requires that a completely different set of
training images be provided.

5. EXPERIMENTAL RESULTS

In this section we demonstrate the usefulness of the proposed
approach to super-resolve a low-resolution observation us-
ing the contourlet coefficients learned from a high-resolution
training data set. Experiments were performed for various
types of face, fingerprint, natural, and texture images. The
training set consists of about 100 good quality images of all
possible classes of objects and is not specific to the class of
objects to be super-resolved. Further, the training data is the
same for all results displayed in this section.

First we consider experiments with a natural image. To
obtain a low-resolution test image and in order to be able to
quantify the improvement during super-resolution, we con-
sider a high-resolution image which does not belong to the

training set and downsample it by a factor 2 using the dec-
imation matrix D in (1). Figure 7(a) shows one such low-
resolution image of size 64 × 64. Figure 7(b) is the original
HR image. Figure 7(c) shows the LR test image upsampled
by a factor of 2 using the bicubic interpolation technique.
The super-resolved image obtained using a standard (separa-
ble basis) wavelet-based learning [20] is shown in Figure 7(d)
where we can observe certain artifacts. If this result is further
regularized using an appropriate edge preserving smoothness
constraint (see [20] for details), the artifacts can be mini-
mized and the corresponding result is shown in Figure 7(e).
But this requires some computationally demanding opti-
mization technique which makes the algorithm unnecessarily
very slow as explained in Section 4.2. Even though, this result
seems sharper than what is shown in Figure 7(d), it is still
slightly blocky (observe the eyes). The super-resolved im-
age using contourlet-based learning is shown in Figure 7(f).
Here we can note that the artifacts as seen in Figure 7(d)
are almost absent. This is because of the capability of the
contourlet transform to capture smoothness along contours.
Note that all these results are quite sharp compared to the re-
sult of bicubic interpolation shown in Figure 7(c). A compar-
ison of Figures 7(c) and 7(f) shows more clear details in the
super-resolved image. Figures 7(g) and 7(h) are the zoomed
up versions corresponding to the marked regions in Figures
7(c) and 7(f), respectively. Here one can clearly observe that
the super-resolved image is quite sharper than the bicubic in-
terpolated one. The super-resolved image is quite close to the
original HR image shown in Figure 7(b).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: (a) A low-resolution fingerprint observation, (b) original high-resolution image, (c) bicubic interpolated image, (d) super-
resolution using wavelet learning without smoothing, (e) super-resolution using wavelet learning with smoothing, (f) the super-resolved
image using the proposed approach, (g) zoomed up portion of the marked region from (c), and (h) zoomed up portion of the marked
region from (f).

Next we show the results of the experiment performed on
a low-resolution fingerprint image. Figure 8(a) shows the LR
observation of size 128 × 128 and Figure 8(b) is the original
HR image of size 256 × 256. The bicubic interpolated image
is shown in Figure 8(c). Figures 8(d) and 8(e) show the re-
sults of wavelet-based learning without and with smoothing,
respectively. The super-resolved image using the proposed
approach is shown in Figure 8(f). Figures 8(g) and 8(h) are
the zoomed up versions corresponding to the highlighted re-
gions in Figures 8(c) and 8(f), respectively. It can be observed
that the contours in the super-resolved image are less blurred
than the bicubic interpolated image.

Figures 9(c)–9(f) show the results of the corresponding
experiments conducted on an LR textured image shown in
Figure 9(a). The super-resolved image using the proposed
approach seems to be much sharper compared to the re-
sults of bicubic interpolation and of wavelet-based learning.
In particular, the edges are better preserved in the super-
resolved image using contourlet learning than the bicubic in-
terpolated image where it appears to be more blurred. The
super-resolved image compared very favorably to the origi-
nal high-resolution image shown in Figure 9(b).

Now we show the results of the experiments performed
on an LR image where the aliasing is very high. The pur-
pose of this experiment is to demonstrate the behavior of the
proposed method when severe aliasing is present in the LR
data. Such a low-resolution image is shown in Figure 10(a)
and the corresponding bicubic interpolated image is shown
in Figure 10(b). Note that the stripes on the scarf are aliased.

Figures 10(d) and 10(e) show the results of wavelet-based
learning without and with smoothing, respectively. The
super-resolved image using the proposed approach is shown
in Figure 10(f). The super-resolved image appears to be
much sharper than the bicubic interpolated one. However,
the proposed method was unable to remove the aliasing ef-
fect.

Finally, in order to convey the comparative edge of the
proposed technique over other super-resolution methods, we
compute the peak signal-to-noise ratio (PSNR) of the recon-
structed images. In Table 1, we compare their performances.
For the fingerprint image, we observe that it offers up to a
4 dB gain in PSNR over the bicubic interpolation technique
and over 3 dB gain over the wavelet-based learning tech-
nique that incorporates the highly time-consuming smooth-
ness constraint. This is quite expected as the fingerprint has
many curved edges which cannot be handled well with sep-
arable basis functions. The contourlet expansion provides a
much better solution. The PSNR improvement is about 2 dB
when the input is quite a smooth one such as the face im-
age, and it improves to over 3 dB when the input image has
noticeably strong edges such as in the brick texture or in the
tiger image.

We end this section with a comment on how the high-
resolution contourlet coefficients were learned from the HR
database images. For the experiment with the face image,
about 24% of all the contourlet coefficients were learned
from the HR database and the rest were set to zero as no
matching coefficients could be found from the database for
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: (a) A low-resolution textured image, (b) original high-resolution image, (c) bicubic interpolated image, (d) super-resolution
using wavelet learning without smoothing, (e) super-resolution using wavelet learning with smoothing, (f) the super-resolved image using
the proposed approach, (g) zoomed up portion of the marked region from (c), and (h) zoomed up portion of the marked region from (f).

(a) (b) (c)

(d) (e) (f)

Figure 10: (a) A severely aliased low-resolution observation, (b) original high-resolution image, (c) bicubic interpolated image, (d) super-
resolution using wavelet learning without smoothing, (e) super-resolution using wavelet learning with smoothing, and (f) the super-resolved
image using the proposed approach.
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Table 1: Comparison of PSNRs for the zoom factor q = 2 expressed in dB.

Image Bicubic interpolation
Wavelet learning

Contourlet learning
Without smoothing With smoothing

Tiger 20.88 15.41 20.18 24.18

Fingerprint 30.81 14.46 30.25 34.30

Texture 22.69 17.53 23.29 26.05

Face 19.95 17.67 19.12 21.81

a given choice of threshold. Further, all these were picked up
from various different images in the database (such as faces,
textures, building images, natural textures, etc.) suggesting
that the learning process is not class specific.

6. CONCLUSIONS

We have described a method for super-resolution restora-
tion of images using a contourlet transform-based learning
technique. The contourlet coefficients at finer scales, learned
from a set of several high-resolution training images, af-
ter proper thresholding to avoid spurious learning, are used
to estimate the super-resolved image. The learning process
ensures capturing the best high-resolution edges from the
training set given a low-resolution observation, as well as
captures the smoothness along contours. The results ob-
tained for different classes of images show perceptual as well
as quantifiable improvements over conventional interpola-
tion techniques. It is also observed that the standard wavelet-
based learning is of no use unless the results are further reg-
ularized using appropriate discontinuity preserving smooth-
ness constraints. The proposed method is useful when mul-
tiple observations of a scene are not available and one must
make the best use of a single observation to enhance its reso-
lution. Currently we are investigating ways to include the blur
matrix B in the observation model given in (1) while super-
resolving the image. Further, all the results given in the pre-
vious section were obtained using directional decomposition
in four subbands. We are investigating what is the optimal
number of directional subbands that would offer the best re-
construction.
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