Additional Reading Material for Curve Fitting

Quadratic polynomials
A quadratic polynomial is of the form $\mathbf{y}=\mathbf{b} \mathbf{x}^{2}+\mathbf{c x}+\mathbf{d}$, where \mathbf{b}, \mathbf{c} and \mathbf{d} are numbers with \mathbf{b} not equal to zero. The degree of the polynomial is 2 .

A quadratic polynomial always has 2 roots- real or imaginary.
The graph of a quadratic function is a parabola. This parabola is symmetric with respect to the axis of symmetry. Parabola intersects its axis of symmetry at the vertex of the parabola.

Cubic polynomials
A cubic polynomial is of the form $\mathbf{y}=\mathbf{a x}^{3}+\mathbf{b} \mathbf{x}^{2}+\mathbf{c x}+\mathbf{d}$, where \mathbf{a} is not equal to zero and a, b, and c are coefficients and d is the constant. If the value of a becomes zero, the cubic polynomial converts to a quadratic polynomial. Both the coefficients and constant are real numbers. The degree of the polynomial is 3 . Cubic polynomial has 3 roots.

