Additional Material for Salts and Solubility

Calculations: Solubility and Solubility Product

NaCl \rightleftharpoons Na⁺ + Cl-

Solubility = S S

Number of Sodium ions at saturation = S, S = 180Number of Chloride ions at saturation = S, S = 180

Volume of water in the container = $5 \times 10^{-23} L$

Mol wt of NaCl = 58.5

Avogadro number = 6.02×10^{23}

Wt. of Avogadro number of molecules = Mol wt.

Amount of NaCl dissolved in the water container with 100 ml water =

{(180/6.023x10²³ x 58.5 x 0.1)/(5.0x10⁻²³)} = 35 gms in 100 ml

Details of calculation of Molar solubility and Ksp for NaCI:

180/ $6.023 \times 10^{23} = 2.988 \times 10^{-22}$ 2.988 × 10^{-22} × 58.5 = 1.748 × 10^{-20} 1.748 × 10^{-20} × 0.1 = 1.748 × 10^{-21} 1.748 × 10^{-21} / 5.0× 10^{-23} = 34.96 Molar Solubility = (Wt. of the salt/Mol.wt) × (1000/Vol) Molar Solubility = 35/58.5 × 1000/100 = 5.989 = 6 M Solubility product of NaCl, K_{sp} = S² = 6 × 6 = 36 Details of calculation of Molar solubility and $K_{\mbox{\scriptsize sp}}$ for Strontium Phosphate:

 $Sr_3(PO_4)_2$ (s) \rightleftharpoons $3Sr_{2+}(aq) + 2PO_{43-}(aq)$

Solubility = 3S 2S

Number of strontium ions at saturation (3S) = 45, S = 15

Number of Phosphate ions at Saturation (2S) = 30, S = 15

Volume of water in the container = $1 \times 10^{-16} L$

Mol.wt of $Sr_3(PO_4)_2 = 452.8$ Avogadro number = 6.02×10^{23}

Amount of $Sr_3(PO_4)_2$ dissolved in the water container with 100 ml water = { $(15/6.023 \times 10^{23} \times 452.8 \times 0.1)/(1 \times 10^{-16})$ } = 1.13 x 10⁻⁵ gms in 100 ml

Details of calculation of Molar solubility and Ksp for $Sr_3(PO_4)_2$:

 $15/ 6.023 \times 10^{23} = 2.49 \times 10^{-23}$ $2.49 \times 10^{-23} \times 452.8 = 1.127 \times 10^{-20}$ $1.127 \times 10^{-20} \times 0.1 = 1.127 \times 10^{-21}$ $1.127 \times 10^{-21} / 1.0 \times 10^{-16} = 0.0000112 = 1.13 \times 10^{-5} \text{ grams in 100 mL}$ Molar Solubility (S) = (Wt. of the salt/Mol.wt) × (1000/Vol) Molar Solubility (S) = .13 × 10^{-5}/452.8 × 1000/100 =2.49 × 10^{-7} M
Solubility Product of Strontium Phosphate = **108S**⁵ = 108 × (2.49 × 10^{-7})⁵ = 1.0 × 10^{-31}

Table 1.0

S. No	Name of the salt	Mol.Wt	No. of cations at saturation	No. of anions at saturation	Solubility in 100 mL	Solubility in moles/L
1	Sodium Chloride	58.44	180	180	35 gm	6 M

Table 1.1

S.No	Name of the salt	Solubility Product (K _{sp}) expression S is Solubility	Solubility in moles/L	Solubility Product (K _{sp})
1	Sodium Chloride	S ²	6	36

Table 2.0

S.No	Name of the salt	Mol.Wt	No. of cations at saturation	No. of anions at saturation	Solubility in 100 mL	Solubility in moles/L
1	Sodium Chloride NaCl	58.44	180	180	35 gm	6 M
2	Strontium Phosphate Sr ₃ (PO ₄) ₂	452.8	45	30	1.13 x 10 ⁻⁵	2.5 x 10 ⁻⁷

Table 2.1

S.No	Name of the salt	Solubility Product (K _{sp}) expression S is Solubility	Solubility (S) in moles/L	Solubility Product (K _{sp})
1	Sodium Chloride	S ²	6	36
2	Strontium Phosphate Sr ₃ (PO ₄) ₂	(3S) ³ (2S) ² = 108S ⁵	2.5 x 10 ⁻⁷	1 x 10 ⁻³¹

Table 2.2

S.No	Name of the salt	Solubility Product (K _{sp}) expression S is Solubility	Solubility (S) in moles/L	Solubility Product (K _{sp})
1	Silver Bromide			
2	Thalium(I) Sulfide			
3	Copper(I) lodide			
4	Silver Arsenate			
5	Mercury(II) Bromide			

Le Chatelier's principle:

Le Chatelier's principle states that change in any one of the parameters such as temperature, pressure, concentration of the reactants, will cause the equilibrium to shift in a direction to reduce the effect of the change. After the change is counteracted the equilibrium will be reestablished.

Suppose an equilibrium is established between four substances A, B, C and D.

A+ B⇔C+D

What would happen if we change the concentration of A or B?

According to Le Chatelier, the position of equilibrium will move in such a way as to counteract the change. That means that the position of equilibrium will move so that the concentration of A or B decreases as they react with each other and form C and D. The position of equilibrium moves to the right.

Also if formed C and D are more reactive than A and B, the reverse reaction will occur.

A very good example of a reversible reaction is formation of ammonia using Haber's process.

 $N_2 + 3H_2 \leftrightarrow 2NH_3$

The forward reaction is exothermic but it is difficult to start the reaction between nitrogen and hydrogen as nitrogen is an inert gas.

We apply **Le Chatelier's principle** for the manufacture of Ammonia. Increase in the concentration of Hydrogen gas and increase in pressure favours the forward reaction.