Additional Material for Merging and Importing Data

Built-in functions for exploring a data frame

We will use built-in dataset `iris` to explore some of the useful functions in `base` package of R language. In order to know the dimensions of `iris`, we use `dim` function. The output of `dim` function is a vector, in which the elements represent the number of rows and number of columns, respectively.

```r
dim(iris)
## [1] 150 5
```

We can also use `nrow` and `ncol` to get the number of rows and number of columns, respectively.

```r
nrow(iris)
## [1] 150
ncol(iris)
## [1] 5
```

Thus, `iris` has 150 rows and 2 columns, which can also be verified by using `str` function. It also returns many useful pieces of information, including the above information and the types of data for each column.

```r
str(iris)
## 'data.frame': 150 obs. of 5 variables:
##  $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 
##  $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 
##  $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 
##  $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.4 0.3 0.2 0.2 0.1 ... 
##  $ Species   : Factor w/ 3 levels "setosa","versicolor",...: 1 1 1 1 1 1 1 1 1 1 ...
```

The first row in the output indicates that this dataset is a data frame with 150 observations of 5 variables. Also, `num` denotes that the variables `Sepal.Length`, `Sepal.Width`, `Petal.Length` and `Petal.Width` are numeric. `Factor` denotes that the variable `Species` is categorical with 3 levels (`setosa`, `versicolor`, `virginica`).

To know the range of values inside `iris`, we use `summary` function. In particular, this function provides a number of useful statistics including range, median and mean (Andrew Shaughnessy 2018).

```r
summary(iris)
##    Sepal.Length    Sepal.Width    Petal.Length    Petal.Width
##      Min.    :4.300      Min.    :2.000      Min.    :1.000      Min.    :0.100
##      1st Qu.  :5.100     1st Qu.  :2.800     1st Qu.  :1.600     1st Qu.  :0.300
##      Median  :5.800     Median  :3.000     Median  :4.350     Median  :1.300
##      Mean    :5.843     Mean    :3.057     Mean    :3.758     Mean    :1.199
##      3rd Qu. :6.400     3rd Qu. :3.300     3rd Qu. :5.100     3rd Qu. :1.800
##    Species
##          setosa :50
##          versicolor:50
##          virginica:50
```
We use `head` to obtain the first \(n \) observations and `tail` to obtain the last \(n \) observations; by default, \(n = 6 \). These are good commands for obtaining an intuitive idea of what the data look like without revealing the entire dataset, which could have millions of rows and thousands of columns (Cai 2013).

```r
head(iris, 2)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##  1     5.1    3.5      1.4     0.2    setosa
##  2     4.9    3.0      1.4     0.2    setosa
```

```r
tail(iris, 2)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 149      6.2    3.4      5.4     2.3     virginica
## 150      5.9    3.0      5.1     1.8     virginica
```

Dependencies for reading datasets in R

In order to read XML files in R, we need to install the `XML` package. However, the Ubuntu package `libxml2-dev` needs to be installed beforehand (Overflow 2013). On Linux operating system, open the terminal and type the following commands.

```
sudo apt-get update
sudo apt-get install libxml2-dev
```

Similarly, while importing Excel data in R, we need to install the `readxl` and `Rcpp` packages. If these packages are not installed and you try importing Excel data, a pop-up message as shown in Figure 1 will be generated. By clicking `Yes` to this message, these packages can be installed.

In case you are using Windows OS, you don’t need to install these packages.

References

